Как увеличить яркость светодиодной лампы - 72-master.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Как увеличить яркость светодиодной лампы

Как увеличить яркость светодиодной лампы на 25% ?

Выбирая в магазине светодиодные лампы, иногда бывает затруднительно решить какую выбрать, если они полностью одинаковые и отличаются только колбами, прозрачная и матовая. Многие мои читатели не верили в большую разницу яркости в зависимости от колбы, поэтому провожу тестирование обычной лампочки с цоколем Е27 и под напряжение 220В. Большинство выпускаются в 3 вариантах защиты светодиодов от внешнего воздействия:

  1. с матовой из пластика;
  2. с прозрачной из пластика;
  3. со стеклянной, матовой или прозрачной.

  • 1. Функция матового пластика
  • 2. Замеры разницы освещенности спереди
  • 3. Замеры освещенности сбоку
  • 4. Итоги

Функция матового пластика

Чаще всего диоды не защищены в недорогих китайских кукурузах, а с точки зрения защиты глаз от яркого света, для кукурузы колба и не требуется. В кукурузе невозможно увидеть все светодиоды одновременно, так как они физически расположены по окружности. А вот для светодиодных ламп классической формы защита от яркого света очень актуальна. При тестировании Экономки на 850 Люмен без защиты, которая состоит из 11 светодиодов на 1 Ватт, мне хватило взгляда в половину секунды, чтобы потом в течение 5 минут видеть пятна от перед глазами. Особый вред открытые светодиоды будут наносить глазам детей и пожилых бабулек, дедулек.

Матовая колба тестируемой светодиодной лампы Экономка

Обычно производители пишут, что матовая она рассеивает свет, делая угол свечения больше 180 градусов. Так же полупрозрачный поликарбонат задерживает большое количество света и мешает охлаждать светодиоды, которые находятся в замкнутом пространстве.

Лично я предпочитаю использовать классические led кукурузы, которые легко разбираются, ремонтируются, не перегреваются, и светят на 360 градусов. Единственное не надо их трогать влажными руками, так как контакты ничем не прикрыты.

Считаю, что непрозрачную колбу можно снимать в некоторых случаях, например:

  1. если лампочка находится в прозрачном рифленом плафоне, которые ставятся в подъездах;
  2. в закрытых матовых плафонах шарообразной и плоской формы;
  3. в открытом плафоне, если его свет направлен вверх, в потолок;
  4. в люстрах, которые рассчитаны на свечу, которая ставится вертикально.

Если колбу не убрать при установке в матовый плафон, то в итоге мы потеряем половину яркости лампы.

Замеры разницы освещенности спереди

Проведем небольшое тестирование светодиодной лампы Экономка на 10W. При помощи люксметра Mastech MS6610 проведем замеры светового потока. Так же узнаем, рассеивает свет, или это все сказки.

Измерение освещенности

Источник света будет расположена в углу комнату на расстоянии 80 см от стен, достаточное расстояние чтобы избежать отраженного света. В условиях полумрака освещённость составляет 3-5 Люкс, что практически равно нулю и учитывать при расчетах не будем.

Сначала измерим падение освещенности непосредственно перед источником. С колбой получается 284 Люкса, без неё 460. Разница составляет 176, то есть без матового колпака освещенность на 62% больше.

Замеры освещенности сбоку

Проведем замеры под углом в 90 градусов, то есть сбоку. Угол свечения светодиодов составляет 120 градусов, соответственно, сектор, в котором разница освещенности будет только заключаться в 30 градусах от плоскости, это вычисляем (180-120)/2=30 градусов.

Замер освещенности сбоку

Как видно по фото, освещенность на этой границе практически одинакова, соответственно с колбой 216 Лк, без неё 229 Лк. Разница 12 Лк, то есть её практически нет. Только не смотрите на освещения по фото, так как камера подстраивается сама, и кажется, что разница есть, хотя Люксметр показывает равные значения.

Итоги

Из этого делаем вывод, что она не рассеивает свет, а только защищает ваши глаза от яркого света. Подсчитаем среднюю освещённость:

..

  • с колбой 284+216=500 Люкс
  • без неё 460+229=689 Люкс

Судя по моим тестам, разница получается в 189 Люкс, что составляет на 38% больше исходного значения. Эти результаты получены для обычной бюджетной led лампочки Экономка, купленной за 160 рублей. Такая большая разница может быть обусловлена только конкретной моделью лампочки, и могу предположить, что в других увеличение яркости составит минимум 25%. Если условия эксплуатации светодиодного источника света позволяют, то можно смело избавляться от матовой преграды.

Познавательная статья про светопропускаемость матовых поликарбонатов

Способы управления яркостью свечения светодиодов с помощью импульсных драйверов

Rich Rosen, National Semiconductor

Введение

Экспоненциальный рост количества светодиодных источников света сопровождается столь же бурным расширением ассортимента интегральных схем, предназначенных для управления питанием светодиодов. Импульсные драйверы светодиодов давно заменили неприемлемые для озабоченного экономией энергии мира прожорливые линейные регуляторы, став для отрасли фактическим стандартом. Любые приложения, от ручного фонарика до информационных табло на стадионах, требуют точного управления стабилизированным током. При этом часто бывает необходимо в реальном времени изменять интенсивность излучения светодиодов. Управление яркостью источников света, и, в частности, светодиодов, называется диммированием. В данной статье излагаются основы теории светодиодов и описываются наиболее популярные методы диммирования с помощью импульсных драйверов.

Яркость и цветовая температура светодиодов

Яркость светодиодов

Концепцию яркости видимого сета, испускаемого светодиодом, понять довольно легко. Числовое значение воспринимаемой яркости излучения светодиода может быть легко измерено в единицах поверхностной плотности светового потока, называемых кандела (кд). Суммарная мощность светового излучения светодиода выражается в люменах (лм). Важно понимать, также, что яркость светодиода зависит от средней величины прямого тока.

На Рисунке 1 изображен график зависимости светового потока некоторого светодиода от прямого тока. В области используемых значений прямых токов (IF) график исключительно линеен. Нелинейность начинает проявляться при увеличении IF. При выходе тока за пределы линейного участка эффективность светодиода уменьшается.

Рисунок 1.Зависимость светового потока от тока через светодиод.

При работе вне линейной области значительная часть подводимой к светодиоду мощности рассеивается в виде тепла. Это потраченное впустую тепло перегружает драйвер светодиода и усложняет тепловой расчет конструкции.

Цветовая температура светодиодов

Цветовая температура является параметром, характеризующим цвет светодиода, и указывается в справочных данных. Цветовая температура конкретного светодиода описывается диапазоном значений и смещается при изменении прямого тока, температуры перехода, а также, по мере старения прибора. Чем ниже цветовая температура светодиода, тем ближе его свечение к красно-желтому цвету, называемому «теплым». Более высоким цветовым температурам соответствуют сине-зеленые цвета, называемые «холодными». Нередко для цветных светодиодов вместо цветовой температуры указывается доминирующая длина волны, которая может смещаться точно также, как цветовая температура.

Способы управления яркостью свечения светодиодов

Существуют два распространенных способа управления яркостью (диммирования) светодиодов в схемах с импульсными драйверами: широтно-импульсная модуляция (ШИМ) и аналоговое регулирование. Оба способа сводятся, в конечном счете, к поддержанию определенного уровня среднего тока через светодиод, или цепочку светодиодов. Ниже мы обсудим различия этих способов, оценим их преимущества и недостатки.

На Рисунке 2 изображена схема импульсного драйвера светодиода в конфигурации понижающего преобразователя напряжения. Напряжение VIN в такой схеме всегда должно превышать сумму напряжений на светодиоде и резисторе RSNS. Ток дросселя целиком протекает через светодиод и резистор RSNS, и регулируется напряжением, подаваемым с резистора на вывод CS. Если напряжение на выводе CS начинает опускаться ниже установленного уровня, коэффициент заполнения импульсов тока, протекающего через L1, светодиод и RSNS увеличивается, вследствие чего увеличивается средний ток светодиода.

Рисунок 2.Топология понижающего преобразователя.

Аналоговое диммирование

Аналоговое диммирование – это поцикловое управление прямым током светодиода. Проще говоря, это поддержание тока светодиода на постоянном уровне. Аналоговое диммирование выполняется либо регулировкой резистора датчика тока RSNS, либо изменением уровня постоянного напряжения, подаваемого на вывод DIM (или аналогичный вывод) драйвера светодиодов. Оба примера аналогового управления показаны на Рисунке 2.

Читайте также:  Инструкция для тех, кто решил изготовить пол на балконе своими руками

Аналоговое диммирование регулировкой RSNS

Из Рисунка 2 видно, что при фиксированном опорном напряжении на выводе CS изменение величины RSNS вызывает соответствующее изменение тока светодиода. Если бы было возможно найти потенциометр с сопротивлением менее одного Ома, способный выдержать большие токи светодиода, такой способ диммирования имел бы право на существование.

Аналоговое диммирование с помощью управления напряжением питания через вывод CS

Более сложный способ предполагает прямое поцикловое управление током светодиода с помощью вывода CS. Для этого, в типичном случае, в петлю обратной связи включается источник напряжения, снимаемого с датчика тока светодиода и буферизованного усилителем (Рисунок 2). Для регулировки тока светодиода можно управлять коэффициентом передачи усилителя. В эту схему обратной связи несложно ввести дополнительную функциональность, такую, например, как токовую и температурную защиту.

Недостатком аналогового диммирования является то, что цветовая температура излучаемого света может зависеть от прямого тока светодиода. В тех случаях, когда изменение цвета свечения недопустимо, диммирование светодиода регулированием прямого тока применяться не может.

Диммирование с помощью ШИМ

Диммирование с помощью ШИМ заключается в управлении моментами включения и выключения тока через светодиод, повторяемыми с достаточно высокой частотой, которая, с учетом физиологии человеческого глаза, не должна быть меньше 200 Гц. В противном случае, может проявляться эффект мерцания.

Средний ток через светодиод теперь становится пропорциональным коэффициенту заполнения импульсов и выражается формулой:

IDIM-LED – средний ток через светодиод,
DDIM – коэффициент заполнения импульсов ШИМ,
ILED – номинальный ток светодиода, устанавливаемый выбором величины сопротивления RSNS (см. Рисунок 3).

Рисунок 3.Двухпроводное ШИМ диммирование.

Модуляция драйвера светодиодов

Многие современные драйверы светодиодов имеют специальный вход DIM, на который можно подавать ШИМ сигналы в широким диапазоне частот и амплитуд. Вход обеспечивает простой интерфейс со схемами внешней логики, позволяя включать и выключать выход преобразователя без задержек на перезапуск драйвера, не затрагивая при этом работы остальных узлов микросхемы. С помощью выводов разрешения выхода и вспомогательной логики можно реализовать ряд дополнительных функций.

Двухпроводное ШИМ-диммирование

Двухпроводное ШИМ-диммирование приобрело популярность в схемах внутренней подсветки автомобилей. Если напряжение на выводе VINS становится на 70% меньше, чем на VIN (Рисунок 3), работа внутреннего силового MOSFET транзистора запрещается, и ток через светодиод выключается. Недостаток метода заключается в необходимости иметь схему формирователя сигнала ШИМ в источнике питания преобразователя.

Быстрое ШИМ-диммирование с шунтирующим устройством

Запаздывание моментов включения и выключения выхода конвертора ограничивает частоту ШИМ и диапазон изменения коэффициента заполнения. Для решения этой проблемы параллельно светодиоду, или цепочке светодиодов, можно подключить шунтирующее устройство, такое, скажем, как MOSFET транзистор, показанный на Рисунке 4а, позволяющий быстро пустить выходной ток преобразователя в обход светодиода (светодиодов).

а)
б)
Рисунок 4.Быстрое ШИМ диммирование (а), формы токов и напряжений (б).

Ток дросселя на время выключения светодиода остается непрерывным, благодаря чему нарастание и спад тока перестают затягиваться. Теперь время нарастания и спада ограничивается только характеристиками MOSFET транзистора. На Рисунке 4а изображена схема подключения шунтирующего транзистора к светодиоду, управляемому драйвером LM3406, а на Рисунке 4б показаны осциллограммы, иллюстрирующие различие результатов, получаемых при диммировании с использованием вывода DIM (сверху), и при подключении шунтирующего транзистора (внизу). В обоих случаях выходная емкость равнялась 10 нФ. Шунтирующий MOSFET транзистор типа Si3458.

При шунтировании тока светодиодов, управляемых преобразователями со стабилизаций тока, надо учитывать возможность возникновения бросков тока при включении MOSFET транзистора. В семействе драйверов светодиодов LM340x предусмотрено управление временем включения преобразователей, что позволяет решить проблему выбросов. Для сохранения максимальной скорости включения/выключения емкость между выводами светодиода должна быть минимальной.

Существенным недостатком быстрого ШИМ-диммирования, по сравнению с методом модуляции выхода преобразователя, является снижение КПД. При открытом шунтирующем приборе на нем рассеивается мощность, выделяющаяся в виде тепла. Для снижения таких потерь следует выбирать MOSFET транзисторы с минимальным сопротивлением открытого канала RDS-ON.

Многорежимный диммер LM3409

National Semiconductor выпускает уникальный многорежимный драйвер светодиодов LM3409, предназначенный как для аналогового, так и ШИМ регулирования яркости. Диммирование может осуществляться одним из четырех способов:

  1. Аналоговое регулирование прямой подачей напряжения 0 … 1.24 В на вывод IADJ.
  2. Аналоговое регулирование с помощью потенциометра, подключенного между выводом IADJ и «землей».
  3. ШИМ регулирование с помощью вывода EN.
  4. ШИМ регулирование с помощью шунтирующего MOSFET транзистора.

На Рисунке 5 показана схема включения LM3409 для управления яркостью с помощью потенциометра. Внутренний источник тока 5 мкА создает падение напряжения на сопротивлении RADJ, которое, в свою очередь, влияет на внутренний порог схемы измерения тока светодиода. С точно таким же эффектом можно управлять микросхемой, непосредственно подавая постоянное напряжение на вывод IADJ.

Рисунок 5.Аналоговое управление яркостью.

Рисунок 6 демонстрирует зависимость измеренного тока светодиода от сопротивления включенного между IADJ и «землей» потенциометра. Плато на уровне 1 А в верхней части графика определяется величиной показанного на Рисунке 4 резистора RSNS, задающего максимальный номинальный ток светодиода.

Рисунок 6.Зависимость тока светодиода от сопротивления потенциометра.

На Рисунке 7 изображена зависимость измеренного тока светодиода от постоянного напряжения, приложенного к выводу IADJ. Заметим, что максимальный ток здесь также определяется величиной RSNS.

Рисунок 7.Зависимость тока светодиода от напряжения на выводе IADJ.

Обе аналоговые технологии диммирования просты в реализации и позволяют с очень высокой линейностью регулировать яркость свечения, вплоть до уровня 10% от максимума.

Заключение

Регулировать яркость свечения светодиодов, питающихся от импульсных преобразователей, можно различными способами. Для каждого из двух основных методов, ШИМ и аналогового, характерны свои достоинства и недостатки. Ценою использования дополнительной логики, ШИМ регулирование значительно уменьшает вариации цвета светодиода при изменении яркости. Схемотехника аналогового диммирования проще, но неприменима там, где требуется поддержания постоянной цветовой температуры.

Перевод: AlexAAN по заказу РадиоЛоцман

Принцип регулировки яркости светодиодов

Если упустить подробности и объяснения, то схема регулировки яркости светодиодов предстанет в самом простом виде. Такое управление отлично от метода ШИМ, который мы рассмотрим чуть позже.
Итак, элементарный регулятор будет включать в себя всего четыре элемента:

  • блок питания;
  • стабилизатор;
  • переменный резистор;
  • непосредственно лампочка.

И резистор, и стабилизатор можно купить в любом радиомагазине. Подключаются они точно так, как показано на схеме. Отличия могут заключаться в индивидуальных параметрах каждого элемента и в способе соединения стабилизатора и резистора (проводами или пайкой напрямую).

Собрав своими руками такую схему за несколько минут, вы сможете убедиться, что меняя сопротивление, то есть, вращая ручку резистора, вы будете осуществлять регулировку яркости лампы.

В показательном примере аккумулятор берут на 12 Вольт, резистор на 1 кОм, а стабилизатор используют на самой распространенной микросхеме Lm317. Схема хороша тем, что помогает нам сделать первые шаги в радиоэлектронике. Это аналоговый способ управления яркость. Однако он не подойдет для приборов, требующих более тонкой регулировки.

Необходимость в регуляторах яркости

Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.

  • Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
  • Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
  • Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
  • Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.
Читайте также:  Как усилить сигнал wi-fi

В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.

ШИМ управление

Выходом из, казалось бы, сложной ситуации стало ШИМ управление (широтно-импульсная модуляция). Ток на светодиод подается импульсами. Причем значение его либо ноль, либо номинальное – самое оптимальное для свечения. Получается, что светодиод периодически то загорается, то гаснет. Чем больше время свечении, тем ярче, как нам кажется, светит лампа. Чем меньше время свечения, тем лампочка светит тусклее. В этом и состоит принцип ШИМ.

Управлять яркими светодиодами и светодиодными лентами можно непосредственно с помощью мощных МОП-транзисторов или, как их еще называют, MOSFET. Если же требуется управлять одной-двумя маломощными светодиодными лампочками, то в роли ключей используют обычные биполярные транзисторы или подсоединяют светодиоды напрямую к выходам микросхемы.

Вращая ручку реостата R2, мы будет регулировать яркость свечения светодиодов. Здесь представлены светодиодные ленты (3 шт.), которые присоединили к одному источнику питания.

Зная теорию, можно собрать схему ШИМ устройства самостоятельно, не прибегая к готовым стабилизаторам и диммерам. Например, такую, как предлагается на просторах интернета.

NE555 – это и есть генератор импульсов, в котором все временные характеристики стабильны. IRFZ44N – тот самый мощный транзистор, способный управлять нагрузкой высокой мощности. Конденсаторы задают частоту импульсов, а к клеммам «выход» подсоединятся нагрузка.

Поскольку светодиод обладает малой инертностью, то есть, очень быстро загорается и гаснет, то метод ШИМ регулирования является оптимальным для него.

Готовые к использованию регуляторы яркости

Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.

Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.

Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.

Как увеличить яркость светодиодной лампы: разбираем со всех сторон

В магазине бывает очень сложно определиться с выбором светодиодной лампы, вроде они все похожи друг с другом, разница только в мощности и в типе колбы. Но, вот здесь и существует особенности, ведь можно подобрать такую колбу, с помощью которой можно будет увеличить яркость светодиодной лампы. Как бы это не звучало, но без особых усилий вы сможете сделать так, что ваша LED будет светить гораздо ярче. Однако здесь есть множество особенностей, их стоит брать в учет.

Функция матового пластика

Чаще всего диоды не защищены в недорогих китайских кукурузах, а с точки зрения защиты глаз от яркого света, для кукурузы колба и не требуется. В кукурузе невозможно увидеть все светодиоды одновременно, так как они физически расположены по окружности. А вот для светодиодных ламп классической формы защита от яркого света очень актуальна. При тестировании Экономки на 850 Люмен без защиты, которая состоит из 11 светодиодов на 1 Ватт, мне хватило взгляда в половину секунды, чтобы потом в течение 5 минут видеть пятна от перед глазами. Особый вред открытые светодиоды будут наносить глазам детей и пожилых бабулек, дедулек.

Матовая колба тестируемой светодиодной лампы Экономка

Обычно производители пишут, что матовая она рассеивает свет, делая угол свечения больше 180 градусов. Так же полупрозрачный поликарбонат задерживает большое количество света и мешает охлаждать светодиоды, которые находятся в замкнутом пространстве.

Лично я предпочитаю использовать классические led кукурузы, которые легко разбираются, ремонтируются, не перегреваются, и светят на 360 градусов. Единственное не надо их трогать влажными руками, так как контакты ничем не прикрыты.

Считаю, что непрозрачную колбу можно снимать в некоторых случаях, например:

  1. если лампочка находится в прозрачном рифленом плафоне, которые ставятся в подъездах;
  2. в закрытых матовых плафонах шарообразной и плоской формы;
  3. в открытом плафоне, если его свет направлен вверх, в потолок;
  4. в люстрах, которые рассчитаны на свечу, которая ставится вертикально.

Если колбу не убрать при установке в матовый плафон, то в итоге мы потеряем половину яркости лампы.

Виды колб у светодиодных ламп

При выборе светодиодной лампы очень сложно определиться с формой колбы, так как на данный момент их существует несколько видов:

Стеклянные LED лампы тоже могут быть как матовыми, так и прозрачными. Именно форма колбы может повлиять на яркость и освещенность светодиодной лампы. Итак, рассмотрим несколько особенностей при выборе формы светодиодной лампы.

Замеры разницы освещенности спереди

Проведем небольшое тестирование светодиодной лампы Экономка на 10W. При помощи люксметра Mastech MS6610 проведем замеры светового потока. Так же узнаем, рассеивает свет, или это все сказки.

Измерение освещенности

Источник света будет расположена в углу комнату на расстоянии 80 см от стен, достаточное расстояние чтобы избежать отраженного света. В условиях полумрака освещённость составляет 3-5 Люкс, что практически равно нулю и учитывать при расчетах не будем.

Сначала измерим падение освещенности непосредственно перед источником. С колбой получается 284 Люкса, без неё 460. Разница составляет 176, то есть без матового колпака освещенность на 62% больше.


Лампа с самым большим углом освещенности и лучшей светоотдачей

Лампы в форме кукурузы, как правило идут без какой-либо колбы. В такой лампе диоды расположены по всему периметру колбы, что позволяет увеличить угол рассеивания до 360 градусов. Так как данные лампы не защищены никакой колбой, то следует избегать прикосновений голыми руками к диодам, в противном случае диоды могут просто перегореть. Как правило LED лампы, у которых диоды не защищены колбой, могут нанести вред зрению, даже при коротком взгляде на открытые диоды, возникает дискомфорт, то есть в течении нескольких минут вы
можете видеть пятна перед глазами и ощущать лёгкое помутнение.

Увеличение яркости LED лампы

В характеристиках к светодиодной лампе, которые пишут производители, указывается что у матовой лампы угол освещенности составляет больше 180 градусов. Поэтому непрозрачную колбу можно снять в тех случаях если:

  • В подъезде установлен светильник с матовым стеклом, либо светильник вовсе отсутствует, убрав колбу с лампы вы значительно увеличите светоотдачу диодов;
  • Плафоны открытого типа, в данном случае свет лампы должен быть обязательно направлен вверх;
  • В люстрах, в которых лампочка должна стоять вертикально.
Читайте также:  Идеи дополнительного освещения темной комнаты

ВНИМАНИЕ! На лампу с открытыми диодами, не должна попадать влага!

Для примера мы выбрали лампу марки «Включай» OPTI R50-7,5W-E14, цветовая температура 4000К (белый свет). Световой поток данной лампы с колбой составляет 580 Люмен, убрав колбу мы получаем светоотдачу в 725 Люмен, то есть мы смогли добиться увеличения яркости на 25%.

Замеры освещенности сбоку

Проведем замеры под углом в 90 градусов, то есть сбоку. Угол свечения светодиодов составляет 120 градусов, соответственно, сектор, в котором разница освещенности будет только заключаться в 30 градусах от плоскости, это вычисляем (180-120)/2=30 градусов.

Замер освещенности сбоку

Как видно по фото, освещенность на этой границе практически одинакова, соответственно с колбой 216 Лк, без неё 229 Лк. Разница 12 Лк, то есть её практически нет. Только не смотрите на освещения по фото, так как камера подстраивается сама, и кажется, что разница есть, хотя Люксметр показывает равные значения.

В качестве примера мы взяли лампу Philips и сняли с нее защитную колбу, вот такие результаты у нас получились:

  • С колбой – 500 люмен.
  • Без колбы – 689 люмен.

Как видите, результат ни лицо, мощность увеличилась на 27%. Если такая лампа будет установлена в нежилом помещении – это прекрасное решение.

Совет, можно купить дешевую лампу и снять с нее колбу, так вы получите хорошую яркость по низкой стоимости.

От чего зависит яркость свечения светодиода и как ее регулировать

Рядового потребителя при покупке осветительного прибора интересует не напряжение или ток, а яркость светодиода, так как она отличается от показателя других ламп. Внедрение новых технологий требует иного подхода к характеристикам светотехники. Основные параметры, в том числе яркость свечения, хорошие производители обозначают в маркировке, на упаковке, в технической документации. Для правильного выбора необходимо знать значение букв и цифр, уметь определить, какой прибор допускает регулировку яркости, какой – нет.

Что такое яркость светодиода и в чем она измеряется

Яркостью свечения называют показатель света, равный соотношению силы светового потока к косинусу угла, под которым он излучается, и освещаемой площади. Другое определение – освещенность в точке, перпендикулярной к источнику, к углу, в который заключен луч. Яркость свечения обозначается буквой «L», измеряется в милликанделах на метр в минус второй степени (кд*м-2). У обычных светодиодов яркость 20-50 мкд, у сверхярких – до 20 000 мкд. От этого показателя зависит восприятие предметов глазами человека.

Если говорить о светодиодах, то у них яркость свечения – это мощность (сила) света, измеряемая в ваттах и зависящая от угла конуса, основание которого расположено на освещаемой площади, вершина – в источнике света. При равном излучении во всех направлениях яркость свечения будет соотношением потока к пространственному углу (в градусах). Чаще всего градусы переводятся в стерадианы: sr = 2 π (1 – cos θ/2), где θ – угол луча.

Параметры, влияющие на яркость

Насколько ярко будет отображаться освещаемый объект, зависит не только от светового потока. Яркость свечения зависит так же от плотности луча и чувствительности наблюдателя.

Сила тока

Во время работы сила тока на светодиоде зависит от напряжения. При незначительном увеличении вольтажа электроток повышается многократно, вместе с ним и яркость свечения. Но этим параметром можно управлять, если включить в схему аналоговый или широко-импульсный модулятор, обеспечивающий функцию диммирования.

Зависимость яркости свечения идеального светодиода от электротока линейная. На практике зависит от потерь на выделении тепла и дифференциального сопротивления кристалла. Существует предел, после которого повышать ток нельзя из-за перегрева p-n-перехода, способного вывести LED из строя.

Технология

Светодиод – это источник света точечного типа, направленность луча определяет конструкция. Параметры меняются в зависимости от оптических свойств и наличия в приборе люминофора, рассеивателей и линз. Независимо от устройства интенсивность свечения регулируется минимальными изменениями тока.

У светодиода при высокой плотности луча (небольшом угле излучения) яркость свеяения увеличивается независимо от объема потока.

Внимание! При покупке необходимо учитывать, что источник с тысячей милликандел и углом излучения 45 градусов будет давать такой же поток, как с углом 12 градусов, но при втором варианте луч будет ярче.

Площадь кристалла

Еще один показатель, от которого напрямую зависит объем светового потока и яркость свечения – величина кристалла. Например, площадь СМД 3528 3,5х2,8 мм, площадь СМД 5630 – 5,6х3 мм, световой поток соответственно 6-8 и 50 люмен. Самые новые кристаллы отличаются большими размерами и высокими показателями интенсивности свечения. Это объясняется тем, что излучение в любом чипе зависит от величины р-n перехода.

Важно! При покупке необходимо знать, что неизвестные китайские производители это используют. Вместо больших кристаллов на 1 Вт они ставят маленькие на 0,75 или 0,5 Вт, при подаче заявленного тока их срок службы значительно сокращается или они перегорают.

Что можно узнать из маркировки

У именитых производителей маркировка достаточно длинная, поэтому размещается на упаковке или в технической документации. Ленты поставляются с маркировкой на катушке. Данные можно спросить у продавца, если их нельзя найти.

Для обычных светодиодов не существует стандартных обозначений, каждый производитель использует свои. Яркость свечения всегда указывается в маркировке мощных ламп.

На SMD указываются только размеры чипа, определить интенсивность свечения можно только из техдокументации. Philips на своей продукции указывает световой поток в люменах, Samsung кодирует этот показатель под цифрами, значение которых можно найти в специальных таблицах. На изделиях CREE из маркировки можно узнать только цветопередачу, обозначенную как CRI.

Важно! Маркировка является одним из факторов, затрудняющих выбор светодиодных источников света при отсутствии определенного уровня знаний.

Способы регулировки яркости

Зная, что яркость свечения любого светодиода зависит от тока, можно сделать логический вывод, что характеристики луча меняются одновременно с увеличением или уменьшением подаваемых на кристалл ампер. При аналоговом регулировании резисторами интенсивность свечения регулируется ступенчато, поэтому в схему необходимо включить стабилизатор LM317, фиксирующий ток и напряжение. Такой способ регулирования используется в транспортных средствах и при подключении светодиодов к источнику постоянного напряжения.

Лучшим способом считается широтно-импульсной модуляции с включением в схему резистора и контроллера (если диоды цветные). На светодиод подаются импульсы определенной частоты, то есть, питание включается и выключается очень быстро, светодиод открывается каждый раз, но глаза это не улавливают.

Важно! Интенсивность свечения ламп с цоколем на основе светодиодов нельзя регулировать, если они не специальные (на упаковке возможность диммирования не указана). Для обычных ламп используется балластный блок питания на основе конденсаторов.

Основные выводы

Измерить интенсивность свечения светодиода в домашних условиях невозможно. Этот показатель редко указывается в маркировке, для правильного выбора необходимо знать его зависимость от размеров кристалла, потока света и угла излучения.

Возможность менять яркость (использовать диммирование) широко используется в быту для экономии электроэнергии и устройства специальных систем освещения. Интенсивность свечения можно уменьшить при просмотре телевизионных программ, во время отдыха, для ночного освещения детских комнат. Удобство использования повышает возможность управления диммированием при помощи пульта управления или автоматически (с учетом движения и времени).

Ссылка на основную публикацию