Устройство защитного заземления - 72-master.ru
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд (пока оценок нет)
Загрузка...

Устройство защитного заземления

Какие виды систем заземления существуют и что такое защитное заземление?

Защитное заземление — это система, созданная для предупреждения воздействия электрического тока на человека, путём преднамеренного соединения с землёй корпуса и нетоковедущих частей оборудования, которые могут оказаться под напряжением. Системы заземления могут быть естественными и искусственными.

Что такое заземление и зачем оно нужно?

Заземляющие устройства представляют собой преднамеренное соединение проводниками электрического типа различных точек электросети.

Назначение заземления заключается в предотвращении воздействия электрического тока на человека. Ещё одно назначение защитного заземления — отведение напряжения с корпуса электроустановки через устройство заземления на землю.

Основная цель применения заземления — снижение уровня потенциала между точкой, которая заземляется и землёй. Тем самым понижается сила тока до наименьшего уровня и уменьшается количество поражающих факторов при соприкосновении с деталями электрических приборов и установок, в которых произошел пробой на корпус.

Что такое нейтраль?

Нейтраль — это нулевой защитный проводник, который соединяет между собой нейтрали электроустановок в трехфазных сетях электрического тока. Сфера использования — зануление электроустановок.

Понижающая подстанция, где находится трансформаторная установка, оснащена своим контуром заземления. Этот контур состоит из стальной шины и прутов, закопанных специальным образом в землю. К источникам потребления в электрощиток от подстанции проложен кабель, имеющий 4 жилы. Когда потребителю электроэнергии нужно питание от цепи трехфазного типа, то все 4 жилы должны быть подключены. Когда к жилам подключается разная нагрузка, в системе происходит смещение нейтрали, чтобы предотвратить это смещение, используется нулевой проводник. Он помогает симметрично распределить нагрузку на все фазы.

Что такое PE и PEN проводники?

PEN-проводник — это проводник, совмещающий в себе функции нулевого защитного и нулевого рабочего проводника. Он идет от подстанции и разделяется на PE и N проводники, непосредственно у потребителя.

PE-проводник — это защитное заземление, которое мы используем, например, в квартире в розетке с заземлением. PE-проводник используется для заземления устройств, установок и приборов, где уровень напряжения не превышает 1 кВ.

Данный тип заземления используется только для гарантии безопасности. Такое заземление обеспечивает непрерывное соединение всех открытых и внешних деталей. Механизм обеспечивает стекание тока на землю, которое появилось вследствии попадания электрического тока на корпус какого-либо устройства.

PEN-проводник (объединение нулевого защитного и нулевого рабочего проводника) применяется при использовании системы заземления типа TN-C.

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с глухозаземленной нейтралью системы заземления TN

К таким системам относятся:

Согласно п. 1.7.3 ПУЭ TN-система — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников.

TN включает в себя такие элементы, как:

  • заземлитель средней точки, которая относится к источнику питания;
  • внешние проводящие части устройства;
  • проводник нейтрального типа;
  • совмещенные проводники.

Нейтраль источника глухо заземлена, а внешние проводники установки подключены к глухозаземленной средней точке источника при помощи проводников защитного типа.

Сделать заземляющий контур можно только в электроустановках, мощность которых не превышает 1 кВ.

Система TN-C

В данной системе нулевой защитный и нулевой рабочий проводники, объединены в один PEN проводник. Они совмещены на всем протяжении системы. Полное название — Terre-Neutre-Combine.

Среди преимуществ TN-C можно выделить только легкий монтаж системы, который не требует больших усилий и денежных затрат. Для монтажа не требуется улучшение уже установленных кабельных и воздушных линий электропередачи, у которых есть всего 4 проводящих устройства.

  • возрастает вероятность получения удара током;
  • возможно появление линейного напряжения на корпусе электрической установки во время обрыва электрической цепи;
  • высокая вероятность потери заземляющей цепи в случае повреждения проводящего устройства;
  • такая система защищает только от короткого замыкания.

Система TN-S

Особенность системы заключается в том, что электричество поставляется к потребителям через 5 проводников в трехфазной сети и через 3 проводника в однофазной сети.

Всего от сети отходит 5 проводящих источников, 3 из которых выполняют функцию силовой фазы, а оставшиеся 2 — это нейтральные проводники, подсоединенные к нулевой точке.

  1. PN — нейтральный механизм, который задействован в схеме электрического оборудования.
  2. PE — глухозаземленный проводник, выполняющий защитную функцию.
  • легкость монтажа;
  • низкая стоимость покупки и содержания системы;
  • высокая степень электробезопасности;
  • не требуется создание контура;
  • возможность использовать систему в качестве устройства от защиты утечки тока.

Система TN-C-S

TN-C-S система предполагает разделение проводника PEN на PE и N в каком-то участке цепи. Обычно разделение происходит в щитке в доме, а до этого они совмещены.

  • простое устройство защитного механизма от попадания молний;
  • наличие защиты от короткого замыкания.
  • слабый уровень защиты от сгорания нулевого проводника;
  • возможность появления фазного напряжения;
  • высокая стоимость монтажа и содержания;
  • напряжение не может быть отключено автоматикой;
  • отсутствует защита от тока на открытом воздухе.

Система TT

TT разработана для обеспечения высокого уровня безопасности. Устанавливается на электростанциях с низким уровнем технического состояния, например, где используются оголенные провода, электроустановки, которые расположены на открытом воздухе или закреплены на опорах.

TT монтируется по схеме четырех проводников:

  • 3 фазы, подающие напряжение, смещаются под углом 120° между собой;
  • 1 общий ноль выполняет совмещенные функции рабочего и защитного проводника.
  • высокий уровень устойчивости к деформации провода, ведущего к потребителю;
  • защита от КЗ;
  • возможность использования на электроустановках высокого напряжения.
  • сложное устройство защиты от молний;
  • невозможность отследить фазы короткого замыкания электрической цепи.

Системы с изолированной нейтралью

В ходе передачи и распределения электрического тока на потребителей применяется трехфазная система. Это дает возможность обеспечить симметричность и равномерное распределение нагрузки по току.

Такое устройство создает режим, предусматривающий использование трансформаторной будки и генераторов. Их нейтральные точки не оснащены контуром заземления.

Изолированный тип нейтрали применяется в схеме питания при соединении вторичных обмоток трансформаторных установок по схеме треугольника и при отсутствии питания во время аварийный ситуаций. Такая сеть представляет собой замещающую цепь.

Изолированная нейтраль способствует пробиванию изоляционного покрытия при коротком замыкании и возникновению короткого замыкания на других фазах.

Понятие и принцип действия защитного заземления

Работающие электрические приборы должны иметь заземление. В зависимости от цели оно может быть рабочим или защитным. Первое предназначено для корректной работы устройств, а второе – для защиты людей. Принцип действия одного и второго разный.

Основные цели и задачи заземления

Почва способна нейтрализовать электрический ток, так как степень ее напряжения равна нулю. Сопротивление – это основной показатель заземляющего устройства, по которому можно судить о его качестве и способности выполнять свое предназначение. Удельное сопротивление зависит от состава почвы, наличия в ней химических веществ – кислотных или щелочных, влажности, рыхлости. В зависимости от состава почвы может потребоваться использование какого-либо специального комплекта заземления или же полная замена грунта для корректной работы заземляющих устройств.

Заземление – это соединение какого-либо прибора, электрической установки или части сети с заземляющим устройством. Оно представляет собой заземлитель и заземляющие проводники, по которым ток стекает в грунт и нейтрализуется.

Заземлителей может быть несколько. В распределенной схеме они располагаются по периметру объекта, электрическую сеть которого необходимо обезопасить. Проводящая часть (заземлители) обычно выполняются из металла. К ним подводятся заземляющие электроды, которые имеют непосредственный контакт с почвой.

Заземляющее устройство монтируется по контуру. Контур заземления – это несколько проводников электродов, которые забиваются в грунт. Их длина – 3 метра, располагаются они на небольшом расстоянии друг от друга. В качестве соединения применяется горизонтальная металлическая полоса, которую укладывают в почву на небольшую глубину – до 1 метра. Соединение с электродами осуществляется с помощью обычной сварки. В специальных заземляющих комплектах части оборудования соединяются резьбой, что никак не влияет на рабочие свойства.

Рабочее заземление необходимо в следующих случаях:

  • Защита оборудования от накопления статического электричества. Процессы, происходящие в природе, например, молнии, могут влиять на ток, протекающий в цепи, в результате чего оборудование может быть повреждено. Электроды, установленные в грунте, отводят излишки тока.
  • Защита сети от замыканий.
  • Защита от перенапряжения.

Пример рабочего заземления – молниеотвод, который присоединен к электродам. Особенно актуально в генераторах, трансформаторах.

Принцип защитного заземления

Защитное заземление – это комплекс мер, которые направлены на защиту оборудования и людей, которые с ним работают. Используется для устранения электромагнитных помех, возникающих из-за работающего рядом устройства, а также для нейтрализации помех при коммутации в цепи питания.

Защита от попадания молнии

Воздушная среда – это участок с большим сопротивлением, но разряд имеет мощность, превосходящую данное сопротивление, поэтому пробивает его. По пути следования из верхних слоев атмосферы к земле молния выбирает участки с наименьшим сопротивлением – мокрые участки, стены, деревья и капли воды. Этим объясняется тот факт, что разряды часто попадают в дерево – оно имеет сопротивление меньше, чем воздух вокруг. При попадании в здание ток также проходит по участкам с наименьшим сопротивлением – это металлические трубы, электрические приборы или их металлические детали, влажные стены. Если устройство не имеет заземления, прикосновение к нему в момент прохождения заряда может быть смертельным.

При установке молниеотвода на крыше заряд попадает в него, а далее движется в землю и нейтрализуется. Важно, чтобы токи не распространялись внутрь объекта, поэтому материалы, которые используются для обустройства заземления, имеют низкое сопротивление. По правилам оно не должно превышать показатель в 4 Ом. Сам молниеотвод должен быть соединен с электродами в грунте.

Защита от импульсного перенапряжения

Электронное оборудование чувствительно к скачкам напряжения или работающим в их радиусе мощным электрическим установкам. Повредить электронику может внезапно возникший разряд молнии вблизи.

В качестве примера: во время грозы может возникнуть избыточный заряд в медном кабеле, которыми соединены дома и по которым проходит ток. Заряд при увеличении его размера способен разрушить кабель. В этом случае на линии питания ставится УЗИП – устройство защиты от импульсного перенапряжения, чтобы избыток заряда стравливался в грунт.

Защита людей

Корпуса приборов, все металлические элементы способны проводить ток. Если коснуться незаземленного прибора, в котором накопилось статическое электричество, можно получить сильный удар. Это отразится прежде всего на сердечно-сосудистой и нервной системе. Снизить удар помогает резиновая обувь, прорезиненные перчатки, абсолютно сухое помещение, но люди редко ходят по квартире или офису в резиновых сапогах. Подключение третьего провода к корпусу приборов, а затем соединение его с электродами позволяет утилизировать в грунт лишний ток.

В старых частных и многоквартирных домах заземляющие мероприятия не проводились, поэтому все электрические приборы представляют потенциальную опасность для людей.

Самодельные устройства могут выглядеть следующим образом: к корпусу прибора подсоединен провод, который выводится на улицу и соединяется с вбитым в землю металлическим изделием (труба, уголок, ведро, арматура). Эти изделия являются хорошими проводниками тока, в отличие от человеческого тела, поэтому ток выбирает металл и уходит в грунт.

Отличие рабочего заземления от защитного

Рабочее и защитное заземление по правилам техники безопасности не должно совмещаться водной схеме. При атмосферных разрядах электрические приборы могут повредиться, при этом защитное заземление не сработает.

Читайте также:  Деревянные окна, отзывы и характеристика

В схеме функционального (рабочего) заземления все токонесущие конструкции соединяются с электродами, установленными в грунте. Для корректной работы рабочего заземления используются также предохранители, которые принимают напряжение на себя и выходят из строя.

Рабочее заземление оборудуется в том случае, если к приборам прилагается указание производителя и требования, которые защищают данное устройство.

К защитному заземляющему устройству предъявляется больше требований, так как оно имеет более важные задачи: сохранение жизни людей.

Назначение рабочего заземляющего устройстваНазначение защитного заземления
Большая мощность приборовТрехфазные приборы мощностью менее 1 кВт
Электронное чувствительное оборудованиеОдно- и двухфазные устройства, не имеющие контакта с грунтом
Медицинские приборыТехника мощностью более 1 кВт
Электронная техника, которая является носителем важной информацииВ схемах с предохранителями и нулевым защитным проводником

Самое надежное заземление предусмотрено в схеме электросети дома. Кабели, которые подходят к каждой розетке, должны быть трехжильными. Третья жила соединяется с землей и отводит статическое электричество, а также предотвращает короткие замыкания и попадание молнии внутрь здания.

Требования к защитному заземлению

Чтобы заземляющие установки выполняли свои функции, они должны соответствовать определенным параметрам и указаниям производителя оборудования.

Нюансы, которые влияют на функционал:

  • Сопротивление грунта из-за его физико-химических особенностей. Лучше всего проводит ток влажная глина, графитовая крошка, торф, солончаки или морская вода. Хуже – сухой песок или твердые породы – гранит, щебень, кварц, асфальт, бетон.
  • Площадь контакта заземлителя с почвой. Чем больше площадь, тем более благоприятные условия создаются для перетекания тока, тем быстрее это происходит. Увеличить площадь можно, установив большее количество электродов по контуру здания. В этом случае их соединяют вместе стальной пластиной в единое целое. Если увеличить размер одного электрода, общая площадь также увеличится. Увеличить площадь помогает установка вертикального металлического контура, если нижние слои грунта имеют большее сопротивление, чем поверхностные.

Поскольку добиться идеального сопротивления почвы трудно, устройства создаются исходя из ее характеристик. Для каждой электрической установки существуют свои нормы сопротивления заземлительных устройств. Например, для электрической подстанции с напряжением более 100 кВт сопротивление не должно быть больше 0,5 Ом, а для домашней сети с системой ТТ, а также применением автоматического отключения – до 500 Ом.

Заземлители из металла не должны покрываться лакокрасочными материалами. Иногда в качестве заземляющего устройства используется подземная часть здания с металлическими конструкциями – электропроводящий бетон с арматурой внутри. Нельзя использовать газовые металлические трубы для решения проблемы заземления.

Согласно Правилам устройства электроустановок заземлению подлежат:

  • Сети, напряжение которых выше 380 В.
  • Особо опасные и наружные установки.

Части оборудования, подлежащие занулению и заземлению:

  • Корпуса электрического оборудования.
  • Вторичная трансформаторная обмотка.
  • Приводы электрических приборов.
  • Распределительные щиты, каркасы шкафов.
  • Металлические конструкции оборудования.
  • Железная оболочка кабеля.

Если напряжение не превышает 42 В переменного тока или 110 В постоянного, заземление не требуется.

Бытовое заземление

Большая часть несчастных случаев в бытовых условиях связана с касанием прибора, который имеет повреждение изоляции. Тело человека в данном случае является проводником тока. Электрические варочные плиты, стиральные и посудомоечные машины, радиаторы отопления, микроволновки, бойлеры, ПК, мойки для посуды – все это металлические конструкции, которые хорошо проводят ток и без заземления могут причинить вред здоровью.

Короткое замыкание – это соприкосновение фазного и нулевого провода в сети, что приводит к срабатыванию аварийной защиты и отключению прибора от питания. Чаще всего происходит не короткое замыкание, а утечка тока, который накапливается в корпусе бытового оборудования. Это может привести к поражению электричеством.

Для безопасности человека необходимо устанавливать розетки с заземляющими контактами. К розетке должен быть подведен трехжильный кабель. При двухжильной и трехжильной системе заземление оборудуется по-разному – от распределительной коробки или электрического щитка.

В качестве заземлителя нельзя использовать газовые, водопроводные или трубы централизованного отопления.

Работа заземления при неисправностях электрооборудования

Под неисправностью оборудования подразумевают повреждение изоляции и возникновение фазы в корпусе прибора. Если части оборудования находятся под напряжением, но не имеют защиты в виде заземления и УЗО, человек, не подозревающий об опасности, может получить удар током.

Во втором варианте утечка тока может быть не значительной, устройство защиты оборудования не среагирует на напряжение и не отключит прибор. Человек может получить незначительный удар.

Если корпус не заземлен, но УЗО установлено, оно сработает через 0,02 секунды после прикосновения человека к корпусу прибора. Этого времени не достаточно для нанесения вреда здоровью.

Самой эффективной с точки зрения безопасности схемой является наличие заземления и УЗО. При возникновении утечки тока и переходе его в грунт УЗО реагирует и отключает прибор.

Как производится расчет параметров основных заземляющих элементов

Расчет параметров заземляющего устройства выполняется по формулам. Исходными элементами являются:

  • сопротивление грунта на данном участке;
  • длина, толщина, диаметр электродов, а также их количество.

На практике во всех случаях бывают расхождения с намеченным планом работ, так как показатель почвы необходимо анализировать более точно. Сделать это практически невозможно: на 100 квадратных метрах необходимо пробурить около 100 мини шахт глубиной до 10 м, чтобы оценить слои почвы, ее состав и включения элементов – глины, известняка, песка и других компонентов.

Установку заземляющих устройств проводят по главному принципу заземления: наличие запаса прочности, имея усредненные значения параметров. Чем ниже получается сопротивление, тем лучше для всех электрических приборов и людей.

Установка заземлителей

Вертикальные электроды более эффективно выполняют свои функции, так как их можно установить на большую глубину. При горизонтальной укладке на небольшую глубину сопротивление увеличивается, особенно в зимний период, когда верхние слои грунта промерзают.

Для электродов применяют штыри, длина которых более 1 метра (обычно 1,5 м). Такие конструкции легко забить в грунт с помощью обычного молотка, соединение выполняется в горизонтальной плоскости не менее 0,5 м в глубину.

Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части

Защитное заземлениезаземление, выполняемое в целях электробезопасности.

Защитное заземление —это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления—снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. При длительном прохождении тока сопротивление тела снижается до 500 – 300 Ом.

Примечание: сопротивление тела человека постоянному току от 3 до 100 кОм.

Расчеты, приведенные на рисунках, весьма приблизительны, но показывают оценить эффективность защитного заземления.

Существенное влияние на ток, проходящий через человека, оказывает величина тока короткого замыкания и сопротивление системы заземления. Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.

1. Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Заземлители

1.Естественные

– водопроводные трубы, проложенные в земле (ХВ)

– металлические конструкции здания и фундаменты, надежно соединенные с землей

– металлические оболочки кабелей

– обсадные трубы артезианских скважин

– газопроводы и трубопроводы с горючими жидкостями

– алюминиевые оболочки подземных кабелей

– трубы теплотрасс и горячего водоснабжения

Соединение с естественным заземлителем должно быть не менее чем в двух разных местах.

2. Искуственные

Контурные

Выносные: групповые и одиночные

Позволяют выбрать место с минимальным сопротивлением грунта.

Традиционно, для искусственных заземлителей применяют угловую сталь толщиной полки не менее 4 мм, стальные полосы толщиной не менее 4 мм или прутковую сталь диаметром от 10 мм.

Широкое распространение в последнее время получили глубинные заземлители с омедненными или оцинкованными электродами, которые по долговечности и затратам на изготовление заземлителя существенно превосходят традиционные методы.

Особая проблема – создание качественного заземления в условиях вечной мерзлоты. Здесь стоит обратить внимание на системы электролитического заземления, позволяющие эффективно решить проблему.

Подробную информацию о различных схемах зазелителей, способах расчета и консультации можно получить на сайте www.zandz.ru

Основная система уравнивания потенциалов.

Построение основной системы уравнивания потенциалов – создание эквипотенциальной зоны в пределах электроустановки с целью обеспечения безопасности персонала и самой электроустановки при срабатывании системы молниезащиты, заносе потенциала и коротких замыканиях.

Основная система уравнивания потенциаловв электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2 ) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;

3 ) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;

4)металлические трубы коммуникаций , входящих в здание…

5 ) металлические части каркаса здания;

6 ) металлические части централизованных систем вентиляции и кондиционирования….

7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9 ) металлические оболочки телекоммуникационных кабелей.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов. (ПУЭ п. 1.7.82)

Несоединенный с ГЗШ элемент конструкции, инженерной системы, независимой системы рабочего заземления ( FE ) и тд. – грубейшее нарушение целостности основной системы уравнивания потенциалов. Появление разности потенциалов ( возможность искры ) – угроза жизни персонала и безопасности объекта.

Примечание: разрядник, указанный на рисунке – специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов. Например: серии «KFSU», «EXFS..» компании DEHN.

Система дополнительного уравнивания потенциалов

должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток (ПУЭ п. 1.7.83).


Система дополнительного уравнивания потенциалов значительно улучшает уровень электробезопасности в помещении. Короткие проводники защитного заземления и уравнивания потенциалов, сведенные на шину, формируют эквипотенциальную зону по принципу аналогично основной системы уравнивания потенциалов.

Читайте также:  Теплоизоляция для теплого пола: изоляция водяная и рулонная, электрическая и лавсановая подложка, отражатель

Как видно из рисунков, схема электропитания претерпевает существенные изменения. Чрезвычайно важно обеспечить соединение контактов заземления розеток и клемм заземления стационарных приборов на шину дополнительного уравнивания потенциалов. При этом, даже если не будет выполнено соединение корпусов приборов с шиной ( безалаберная эксплуатация, особенно переносных приборов ) система сохранит свою эффективность по безопасности. Ситуация, когда земли розеток и приборов не подключены к шине, а сторонние проводящие части гарантированно соединены с шиной уравнивания потенциалов, в разы ухудшает электробезопасность в помещении даже по сравнению с классической схемой питания.

Сторонняя проводящая частьпроводящая часть, не являющаяся частью электроустановки.

Если формально подходить к определению, то и металлическая дверная ручка и петли на деревянной двери в деревянном доме являются сторонними проводящими частями.

При формировании дополнительной системы уравнивания потенциалов возникает вопрос, что подключать, а что не подключать на шину дополнительного уравнивания потенциалов, чтобы добиться необходимого уровня электробезопасности и не делать систему слишком громоздкой. Здесь, с точки зрения здравой логики, можно руководствоваться двумя принципами:

  1. Фактическая ( потенциальная ) возможность связи с «землей».
  2. Возможность появления потенциала на сторонней проводящей части при аварии электрооборудования в процессе эксплуатации.

Примеры сторонних проводящих частей подключаемых / не подключаемых к шине дополнительного уравнивания потенциалов:

Сторонняя проводящая часть

Металлическая полка, закрепленная на стене из непроводящего материала.

Металлическая полка, закрепленная на стене из железобетона.

(потенциальная связь с «землей» за счет крепежа к стене)

Металлическая полка, закрепленная на стене из непроводящего материала.

На полке расположен электроприбор.

(возможность появления потенциала при аварии прибора с классом изоляции I)

Металлическая тумбочка с резиновыми (пластиковыми) колесиками на бетонном полу.

Металлическая тумбочка с резиновыми колесиками на бетонном полу.

В помещении грязь и пыль в сочетании с повышенной влажностью.

(потенциальная связь с «землей» за счет загрязнения и повышенной влажности)

Некоторое количество вопросов с уравниванием потенциалов возникает по ванным и душевым помещениям. Современные требования и рекомендации по устройству системы дополнительного уравнивания потенциалов изложены в циркуляре № 23/2009.

Широкое применение пластиковых труб породило закономерный вопрос: является ли водопроводная вода сторонней проводящей частью и возможен ли занос потенциала через воду….

Ответ, содержащийся в циркуляре, несколько настораживает:«Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть.»

К сожалению, вода нормального качества из наших кранов течет не всегда и лучше перестраховаться, используя токопроводящие вставки на отводах от стояков водопровода подключив их к шине дополнительного уравнивания потенциалов, чтобы не подключать отдельно каждый кран. Этот метод в качестве рекомендуемого описан в этом же циркуляре.

Практика выполнения дополнительной системы уравнивания потенциалов.

Фактически наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:

Вариант 1. С использованием стандартных коробок уравнивания потенциалов ( КУП ).

Вариант 2. Стальная шина 4х40 ( 4х50 ) с приварными болтами опоясывающая помещение.

Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.

Вариант 4. Использование шины заземления в РЩ ( для небольших помещений ).

Вариант 5. С использованием специализированного щитка типа ЩРМ – ЩЗ

( встроенный щиток с шиной 100 мм 2 ( Cu ) со степенью защиты IP54 ).

Главные требования нормативов по устройству шины дополнительного уравнивания потенциалов содержат два требования:

– возможность осмотра соединения

– возможность индивидуального отключения

  1. Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м.( ? ). Сечение 4 мм 2 Сu ( ПВ-1, ПВ-3 ). См. ПУЭ 1.7.82 рис. 1.7.7.
  2. Для электроустановки здания, где применяются негорючие ( ВВГ нг –FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПВ-1, ПВ-3 ( проводники уравнивания потенциалов от дополнительной системы уравнивания потенциалов до ГЗШ или щитовой шины заземления ). Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
  3. Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и тд. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант – короба фирмы DKC в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.

МЕД. ГОСТ Р 50571.28 п. 710.413.1.6.3 « Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…»

Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом № 5, схема которого представлена на рисунке.

Устройство, принцип работы и схемы защитного заземления

Вне зависимости от эксплуатационных характеристик, электрифицируемое здание должно иметь качественно организованную систему защитной электробезопасности. Защитное заземление позволяет создать такую систему.

Этот тип заземления характеризуется соединением определенных элементов электроустановки с ЗУ (заземляющим устройством) и ориентирован на уменьшение показателей напряжений прикосновения и шага, возникающих при замыкании циркулирующих токов на корпусах электрооборудования.

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

  • I — показатель расчетного тока заземления;
  • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.
Читайте также:  Клапан для водонагревателя: какой нужен и зачем

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

Схемы заземления дома

Одним из основных элементов, необходимых для обеспечения электрической и пожарной безопасности объекта, является защитное заземление, поэтому закономерно, что грамотное технологическое производство такой системы – первостепенная задача. Добиться необходимого результата решения этой задачи невозможно без правильного выбора схематического варианта соединения и подключения заземляющих элементов.

Помните! Каждый элемент, при помощи которого реализуется защитное заземление, имеет схематическое обозначение. Для того чтобы выбрать оптимальный вариант схематического обоснования подключения такой системы, человеку нужно разбираться как в буквенных, графических, так и в цветовых чертежных обозначениях.

Чаще на практике применяются два вида подключения — схемы TN-C-S и TT. Отличия в проектировании схем:

  1. Схема TN-C-S. При организации защитного заземления объекта по данной схеме, предусмотрена реализация следующих моментов:
    • роль защитного и нулевого (рабочего) проводника выполняет один кабель (PEN);
    • локализация — участок электросети от трансформатора и до ГЗШ (главной заземляющей шины). Уже на ГЗШ провод PEN разделяется на рабочий нулевой (N) и защитный (PE).
      Цифрой 1 на картинке обозначено заземление источника, а цифрой 2 – заземляемый объект (дом).

Важно! При выборе схемы TN-C-S в качестве основы производства заземляющих работ важно учесть наличие глухозаземленной нейтрали. Получается, что ГЗШ дома соединяется с заземлением самого трансформатора, питающего объект.

    Схема TT. Прежде чем применить эту схему, необходимо аргументировать отказ от использования TN-C-S системы. Предусмотрена обязательная реализация нормативных требований, установленных к системе TT, а именно:

  • производится независимое подключение элементов, исключается соединение с нейтралью трансформатора;
  • заземлитель всех корпусов электрооборудования дома не зависит от аналогичного элемента источника питания;
  • в электрической проводке дома обязательно применяется УЗО (устройство защитного отключения).

Цифрой 1 на картинке обозначено заземление источника; цифрой 2 — дом, а 3 — это само устройство заземления дома.

Важно! В схеме TT полностью отсутствует организация защиты пользователя при утечке тока во время повреждения изоляции. Следовательно, монтировать УЗО для электрической проводки, реализованной по ТТ схеме, — обязательно.

В связи со значительным затруднением производства заземляющих работ по схеме TT, большинство объектов заземляются посредством TN-C-S системы.

Заземление — важный элемент обеспечения пожарной безопасности здания и электробезопасности его жильцов. Начинать работы по его созданию, руководствуясь лишь общими понятиями определения, что такое защитное заземление, не стоит. Нужно изучить теоретические и практические особенности устройства электрозащитной системы, разбираться в производстве расчетов ее параметров и уметь произвести измерение величины ее сопротивления после монтажа. При отсутствии навыков и необходимого оборудования следует доверить выполнение такой работы профильным специалистам.

Устройство защитного заземления. Как сделать надёжный контур?

Здравствуйте, уважаемые друзья!

Если сравнить те требования электробезопасности, которые применялись к промышленным и бытовым электроприборам несколько лет назад, и современные безопасные нормы, то можно заметить существенные различия.

Не будем далеко залазить в дебри, а посмотрим конкретные примеры, чтобы обычной домохозяйке стало понятно. Ведь это касается каждого (микроволновка и холодильник есть у всех). Многие просто не обращают на эту тему внимания, а зря.

Томить долго не буду. В этой статье рассмотрим устройство защитного заземления, что оно собой представляет, для чего нужно и как его сделать своими руками. Итак, поехали…

Из этой статьи вы узнаете:

Назначение защитного заземления

Уже из самого названия понятно, что цель заземления – это защита человека от поражения электрическим током. Где он (ток) может появиться? На всех металлических частях и корпусах различных электроприборов, которые работают от электричества. Но, скажите Вы, сейчас такие хорошие изоляционные материалы, высокие технологии и т. д. И будете правы. Но не стоит забывать и случайности, которые в нашей жизни происходят довольно часто.

Простой пример из нашего быта. Представьте обыкновенную небольшую духовку для приготовления курочки, тортиков, выпечки. Она имеет, как и многие бытовые приборы (холодильник, боллер, микроволновка, насос и т.д.) металлический корпус. Со временем изоляция на проводах может разрушиться, подплавиться или просто отгорит какой-нибудь провод. Причин много: длительное время эксплуатации, высокая температура, вибрация, заводской брак, нарушение правил эксплуатации прибора и многое другое.

Этот «голый провод», находящийся под напряжением может случайно оказаться на металлическом корпусе, значит, он весь окажется под напряжением (корпус). Что может произойти в данном случае? Может быть короткое замыкание, и тогда автоматика просто отключит электричество. А может ничего не произойти, всё будет работать до тех пор, пока человек не затронет корпус духовки.

Во время прикосновения к металлической части (токопроводящей), человек получит электрический удар. Какой силы он будет, не знает никто. Здесь всё индивидуально и зависит от сотни факторов. Рассматривать их не будем (факторы), но любой удар током – это сильный стресс для организма, особенно для сердца. Благо, если всё закончится хорошо, а ведь бывают и смертельные случаи. Никого не хочу пугать и отказываться от электротехники, но статистика не умолима и показывает конкретные факты.

Итак, для чего делают заземление, думаю понятно. Не случайно в любой бытовой технике питающие провода выполнены трёхжильным проводом и вилка имеет заземляющую клемму. Кстати, требования к электропроводке, сейчас значительно изменились, и для питания любых приборов применяют только трёхжильный провод. Одним словом — наличие защитного заземления обязательно. Если раньше двух жил проводов (фаза и нуль) в электропроводке дома или квартиры было достаточно, то сейчас уже «такое безобразие» монтировать нельзя. Наличие «земли» обязательное и нужное требование. Даже светильники для бани имеют на клемнике заземляющий провод, подключенный к корпусу.

Устройство защитного заземления

Начнём с определения, выскажусь простыми словами без электрических терминов и определений. Защитное заземление – это преднамеренное (специальное) соединение электрическим проводом металлического корпуса бытового прибора и заземляющего контура (заземлителя). В нормальном состоянии этот корпус находиться под напряжением никогда не должен. А если уже случится непредвиденное, то электрический заряд уйдёт в землю при помощи заземления.

Почему именно в землю? Тут уже действуют элементарные законы физики. Любой электрический заряд «стремится куда-то уйти». И лучшее место для этого «куда-то» — это наша с Вами планета Земля. Простой пример – железная дорога. Трамвай или электровоз, проводя через свои электродвигатели ток, уводит его через рельсы именно в землю. Это закон нашей природы, от него никуда не деться, а надо грамотно использовать.

Устроено защитное заземление довольно просто. Схема работы примерно такая: бытовой прибор (потребитель электроэнергии) электрический проводник заземляющий контур.

В качестве электрического проводника могут быть провода, железные конструкции, металлические ленты и так далее. Многие, наверно, видели узкие металлические ленты, которые спускаются со зданий и уходят в землю. Часто их можно встретить на больницах, школах, садах. Это потому, что современные требование к медицинской аппаратуре, оргтехнике, устройствам пищеприготовления очень высоки, и нарушать их никак нельзя.

Элементарный заземляющий контур представляет собой железный штырь, вбитый в землю. Через него случайный ток будет уходить в землю. Ещё заземляющими контурами могут быть естественные сооружения. К ним можно отнести металлические трубопроводы, отдельные железные фрагменты зданий и их фундаментов, какие-то железобетонные конструкции и прочие схожие объекты. Главное – чтобы они удовлетворяли определённым требованиям. Какие эти требования, тем более цифры – рассматривать пока не будем.

С назначением и устройством защитного заземления понятно. Теперь перейдём к следующему вопросу — как сделать заземляющий контур своими руками.

Монтаж защитного заземления своими руками

Вообще, качество защитного заземления напрямую зависит от грунта. Например, сложно сделать хорошее заземление на камнях. Здесь нужно создать «надёжный контакт» с землёй, что в данном случае очень проблематично. Но и здесь существуют свои методы и разработки, которые рассматривать не будем. Просто затронем обычный житейский вариант.

Самые подходящие почвы для надёжного контура заземления – это суглинок, глина и торф. На песчанике устроить хорошее заземление гораздо сложнее. Не маловажным показателем будет глубина залегания грунтовых вод. Чем выше грунтовые воды, тем лучше будет заземление. Как известно, вода отличный проводник электричества, поэтому, она играет важную роль в данном вопросе.

Для изготовления надёжного заземляющего контура Вашей бани или дома нужно выбрать примерно в метре от фундамента, влажное тенистое место возле постройки. Людям здесь ходить нежелательно, можно организовать цветник с тенелюбивыми растениями. После этого выкапывается траншея в виде периметра треугольника шириной на штык лопаты. Глубину выбираем в зависимости от грунта. Чем суше и каменистее почва – тем глубже копаем. Но в среднем углубляться следует не меньше полуметра.

Приготовив траншеи, переходим к заземлителям. В их роли могут быть использованы железные трубы, уголки, швеллера, металлические прутья и арматура. Конечно, стеклопластиковая арматура здесь применяться не может, так как является идеальным диэлектриком. Более продвинутый вариант – специальные электроды из стали или меди, которые изготавливают именно для этих целей. В этом видео как раз рекламный ролик этой темы.

Отрезав выбранный или имеющийся материал длиной примерно 2 метра, забиваем заземлители в грунт по углам приготовленного треугольника. Затем при помощи сварки или специальных зажимов (плашек) соединяем забитые уголки или электроды между собой. В роли соединителя лучше всего применить металлическую полосу.

Если соединения происходят при помощи сварки, то эти места очищаются от шлака и прокрашиваются суриком. Только не стоит красить все металлические части, это значительно ухудшит результат. Цель этой работы – создать большую площадь соприкосновения металлических частей с землёй. Чем больше будет площадь, тем лучше. Электрическое сопротивление при этом значительно снизится. Чего мы и добиваемся.

Следующий этап – проводом (лучше голым) соединяем сделанный заземляющий контур с заземляющей шиной в электрическом распределительном щите дома или бани. Сечение провода лучше взять 16 мм 2 или больше. Соединяем с помощью болтовых соединений: для лучшего контакта целесообразно воспользоваться наконечниками. Если вводной щит металлический – его также заземляем через специальный болт. Это делается обязательно.

После того, как заземляющий контур смонтирован и подключен к сборке, можно его немного засыпать землёй, посыпать обычной поваренной солью, полить водой и хорошо утрамбовать. Соль и вода создадут наименьшее электрическое сопротивление между грунтом и контуром. Затем вся траншея засыпается остатками земли и выравнивается.

На этом монтаж защитного заземления можно считать законченным. Если всё сделано правильно, то при замерах, сопротивление контура не должно превышать 4 Ом. Но этого, как правило, никто никогда не делает. Существуют фирмы, которые занимаются электрическими замерами, но цены на эти услуги ощутимо «кусаются». Так что лучший вариант – всё устройство защитного заземления сделать самостоятельно и правильно, соблюдая те моменты, которые описаны выше.

Цитата мудрости: Настоящая жизнь совершается там, где она не заметна .

Ссылка на основную публикацию